In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography.
نویسندگان
چکیده
PURPOSE To characterize the in vivo three-dimensional (3D) lamina cribrosa (LC) microarchitecture of healthy eyes using adaptive optics spectral-domain optical coherence tomography (AO-SDOCT). METHODS A multimodal retinal imaging system with a light source centered at 1050 nm and AO confocal scanning laser ophthalmoscopy was used in this study. One randomly selected eye from 18 healthy subjects was scanned in a 6° × 6° window centered on the LC. Subjects also underwent scanning with Cirrus HD-OCT. Lamina cribrosa microarchitecture was semiautomatically segmented and quantified for connective tissue volume fraction (CTVF), beam thickness, pore diameter, pore area, and pore aspect ratio. The LC was assessed in central and peripheral regions of equal areas and quadrants and with depth. A linear mixed effects model weighted by the fraction of visible LC was used to compare LC structure between regions. RESULTS The nasal quadrant was excluded due to poor visualization. The central sector showed greater CTVF and thicker beams as compared to the periphery (P < 0.01). Both superior and inferior quadrants showed greater CTVF, pore diameter, and pore mean area than the temporal quadrant (P < 0.05). Depth analysis showed that the anterior and posterior aspects of the LC contained smaller pores with greater density and thinner beams as compared to the middle third (P < 0.05). The anterior third also showed a greater CTVF than the middle third (P < 0.05). CONCLUSIONS In vivo analysis of healthy eyes using AO-SDOCT showed significant, albeit small, regional variation in LC microarchitecture by quadrant, radially, and with depth, which should be considered in further studies of the LC.
منابع مشابه
Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography.
We demonstrate the repeatability of lamina cribrosa (LC) microarchitecture for in vivo 3D optical coherence tomography (OCT) scans of healthy, glaucoma suspects, and glaucomatous eyes. Eyes underwent two scans using a prototype adaptive optics spectral domain OCT (AO-SDOCT) device from which LC microarchitecture was semi-automatically segmented. LC segmentations were used to quantify pore and b...
متن کاملIn vivo examination of lamina cribrosa microarchitecture and optic nerve head morphology in normal human eyes with age
In vivo examination of lamina cribrosa microarchitecture and optic nerve head morphology in normal human eyes with age Purpose: Age is a risk factor for the development of glaucoma. Several studies suggest that normal aging could increase the susceptibility of the optic nerve head (ONH) to glaucomatous damage. We examined whether differences exist in lamina cribrosa and ONH structure in vivo be...
متن کاملThree-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma.
PURPOSE To introduce a novel, digital, three-dimensional (3D) reconstruction of the optic nerve head (ONH) and to use this method to evaluate the 3D configuration of the lamina cribrosa (LC) in patients with primary open-angle glaucoma. METHODS Optic discs of 137 eyes of 137 patients with open-angle glaucoma were scanned with enhanced depth-imaging spectral domain-optical coherence tomography...
متن کاملRetinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملReproducibility of In-Vivo OCT Measured Three-Dimensional Human Lamina Cribrosa Microarchitecture
PURPOSE To determine the reproducibility of automated segmentation of the three-dimensional (3D) lamina cribrosa (LC) microarchitecture scanned in-vivo using optical coherence tomography (OCT). METHODS Thirty-nine eyes (8 healthy, 19 glaucoma suspects and 12 glaucoma) from 49 subjects were scanned twice using swept-source (SS-) OCT in a 3.5×3.5×3.64 mm (400×400×896 pixels) volume centered on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 55 10 شماره
صفحات -
تاریخ انتشار 2014